Numerical study of AGN

Zhiyuan Yao (姚致远)

Shanghai Astronomical Observatory, Chinese Academy of Sciences

Cavity

Collaborated with: F. Yuan, D. Yoon, Y. Li, Z. Gan, F. Guo (SHAO) J. P. Ostriker (Columbia Univ.) L. Ciotti (Univ. of Bologna)

R. Narayan (Harvard) L. Ho (KIAA-PKU), H. Mo (Tsinghua)

AGN feedback

Mechanical & Radiative feedback

wind radiation

Gas fueling

Bondi radius

Jet

ISM, star formation

AGN

Key issues of AGN feedback:

• How to determine BH accretion rate ?

• For a given rate, what are the outputs from AGN?

Current situation and our approach

- Many focus on very large (e.g., cosmological) scale (Di Matteo et al. 2005; Springel et al. 2005; Debuhr et al. 2010, 2011; Johansson et al. 2009; Li et al. 2015; Illustris...), thus:
 - only resolve galactic scale, not the accretion scale
 - Model of AGN feedback: subgrid & simple
- To better understand feedback, we focus on galaxy scale
 - Can resolve the Bondi scale
 - Adopt the most updated AGN physics: radiation + outflow
 - Calculate the interaction between wind & radiation with ISM

Outline

- Review of accretion physics:
 - Two accretion modes: cold & hot
 - Descriptions of wind & radiation in each mode
- Model setup: AGN feedback in an isolated galaxy
- Results: light curve; duty-cycle; star formation; BH growth

Cold accretion(feedback) mode (I)

Shakura & Sunyaev 1976; Pringle 1981, ARA&A; Blaes 2013; Omer and Mitch's talks

- Correspond to quasar (thermal/radiative) feedback mode
- Cool: ~10⁶ K, Geometrically thin & Optically thick
- Outputs: strong wind & radiation, but no jet (?)
- Radiation
 - Efficiency high: ~0.1
 - Spectrum: quasar spectrum (big blue bump et al.)

Cold accretion mode (II): wind

Crenshaw et al. 2003, ARA&A; Tombesi et al. 2010, 2014; Gofford et al. 2015...

- Many observations: BAL quasar, UFO, warm absorber...
- Wind production mechanisms:
 - Thermal + magnetic + radiation (line force)
- Wind properties: mass flux & velocity (from observations, e.g., Gofford et al. 2015)

$$\dot{M}_{\rm W,C} = 0.28 \left(\frac{L_{\rm BH}}{10^{45} \, {\rm erg \, s^{-1}}}\right)^{0.85} M_{\odot} \, {\rm yr^{-1}}$$
$$v_{\rm W,C} = 2.5 \times 10^4 \left(\frac{L_{\rm BH}}{10^{45} \, {\rm erg \, s^{-1}}}\right)^{0.4} \, {\rm km \, s^{-1}}$$

Hot accretion (feedback) mode (I)

Narayan & Yi 1994, 1995; Yuan & Narayan 2014, ARA&A

- Correspond to kinetic (radio/jet/ maitanence) feedback mode
- Hot, geometrically thick; Optically thin;
- Outputs: radiation, wind & jet
- Radiation:
 - Efficiency: a function of Mdot \rightarrow
 - Spectrum: complicated; different from luminous AGN

Xie & Yuan 2012

Hot accretion flow (II): wind

Yuan et al. 2012; Narayan et al. 2012; Yuan et al. 2015

- Observational evidence:
 - Hard state of black hole X-ray binaries (Homan et al. 2016)
 - Sgr A* (Wang et al. 2013, Science)
 - LLAGN (Cheung et al. 2016, Nature)
 - Radio galaxy (Tombesi et al. 2010, 2014)
- But wind properties still poorly constrained
- Theoretical studies:
 - Yuan et al. (2012), Narayan et al. 2012: show the existence of wind
 - Yuan et al. (2015): calculate wind properties

Trajectory of wind based on GRMHD simulation

Yuan et al. 2015

Properties of wind from hot accretion flow Yuan et al. 2015

- Use trajectory approachDifferent from stream line
- Mass flux

 $\dot{M}_{\rm W,H}(r) = \dot{M}_{\rm BH}(\frac{r}{20r_s})$

Wind speed

 $v_{\rm W,H}(r) \sim 0.2 v_K(r)$

Momentum/energy fluxes of wind/radiation in cold/hot accretion(feedback) modes

Hydrodynamical Equations

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{v} = \alpha \rho_* + \dot{\rho}_{II} - \dot{\rho}_*^+,$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \rho \mathbf{g} - \nabla p_{rad} - \dot{m}_*^+,$$

$$\rho \frac{D}{Dt} \left(\frac{e}{\rho}\right) = -p \nabla \cdot \mathbf{v} + H - C + \dot{E}_S + \dot{E}_I + \dot{E}_{II} - \dot{E}_*^+,$$

Physics included in the model:

Stellar mass loss from dying stars
Gas depletion from star formation
Feedback of Type II supernovae
Feedback of Type Ia supernovae
Thermalization due to stellar dispersive motion

Galaxy Model

We focus on the **cosmological evolution** of an **isolated elliptical galaxy.**

Gas source

• only stellar mass loss during their cosmological evolution

Gravity

- Super massive black hole
- Stellar population
- Dark matter halo
- But no gravity from interstellar medium

Li&Bryan2012

Contribution of SN Ia to energy

Ciotti, Ostriker et al. 2009

Massive stars (SNe II) died before the simulation starts due to their short lifetime.

But **SNe Ia** can be triggered by **accretion or merger events of neutron stars/white dwarfs**,

$$R_{\rm SN}(t) \approx 0.32 \times 10^{-12} h^2 \frac{L_{\rm B}}{L_{\rm B,sun}} \left(\frac{t}{13.7 \,{\rm Gyr}}\right)^{-1.1} {\rm yr}^{-1.1}$$

Each SN Ia releases energy in an order of 10⁵¹ erg

Star Formation

We estimate SFR using the standard Kennicut-Schmidt prescription:

$$\dot{\rho}_{\mathrm{SF}} = rac{\eta_{\mathrm{SF}}
ho}{ au_{\mathrm{SF}}} \qquad au_{\mathrm{SF}} = \max(au_{\mathrm{cool}}, au_{\mathrm{dyn}})$$

We also consider SNe II among the newly formed stars.

$$N_{\rm II} = \int_{M_{\rm II}}^{\infty} \frac{dN}{dM} dM = \left(1 - \frac{1}{x}\right) \left(\frac{M_{\rm inf}}{M_{\rm II}}\right)^{x} \frac{M_{sun}}{M_{\rm inf}} \frac{\Delta M_{*}}{M_{sun}} \approx 7 \times 10^{-3} \frac{\Delta M_{*}}{M_{sun}}$$

Radiative Heating & Cooling

Sazonov et al. 2005

Net energy change rate per unit volume:

 $\dot{M} = n^2 \left(S^1 + S^2 + S^3 \right)$

Bremsstrahlung cooling $S_1 = -3.8 \times 10^{-27} \sqrt{T}$ Compton heating/cooling $S_2 = 4.1 \times 10^{-35} (T_X - T)\xi$ photoionization heating, line and recombination cooling $\alpha + b (\xi / \xi))^c$

$$S_3 = 10^{-23} \times \frac{a + b(\xi/\xi_0)^c}{1 + (\xi/\xi_0)^c}$$

Setup of MACER code (Massive AGN Controlled Ellipticals Resolved)

Yuan et al. 2018; Ciotti & Ostriker 2001, 2007; Novak et al. 2012; Gan et al. 2014

- Based on ZEUS-MP; 2D + hydro + radiation
- Resolution: 0.3 pc
- Simulation domain (spherical coordinate):
 - R_{in}=2.5 pc (~0.1 Bondi radius);
 - $R_{out}=250 \text{ kpc}$
- Evolve for cosmological time (~12 Gyr)
- Mdot self-consistently determined (not Bondi!)
- Two accretion/feedback modes discriminated
- Inject wind & radiation from R_{in} then calculate their interaction with ISM

Light curve of AGN (I)

Yuan et al. 2018

Most of time, AGN stays in LLAGN phase

Light curve of AGN (II): AGN lifetime

Lifetime of AGN: 10⁵ yr, consistent with observations (e.g., Keel et al. 2012; Schawinski et al. 2015; King & Nixon 2015)

Growth of black hole mass

Yuan et al. 2018

AGN feedback regulates BH mass growth.

Star formation — suppressed or enhanced?

- Overall, star formation is suppressed
- Wind can reach & suppress SF up to 20 kpc, consistent with observation (e.g., Liu et al. 2013)
- But beyond ~20 kpc, SF is enhanced; again consistent with observation (e.g., Cresci et al. 2015)

Specific Star Formation Rate

Relation between AGN & SFR:

- Negative or positive?
 - Depending on location and time!
- Compare light curves of AGN with
 sSFR: to be studied

Question:

How to study effect of feedback on SF from observation?

AGN duty-cycle

Percentage of the total simulation time spent above an Eddington ratio Consistent with observations Percentage of the total energy emitted above 2% Eddington ratio: ~10% NOT consistent with observations: why?

X-ray Luminosity & Surface Brightness

X-ray cavity can be produced by AGN wind even if the jet is absent!

- AGN feedback studied by high-res. simulation: Bondi radius resolved
- Exact AGN physics adopted:
 - □ two accretion/feedback modes: cold & hot
 - proper descriptions of radiation & wind
- □ Include: interaction between wind & radiation and ISM; SNe; SF
- □ AGN light curve, BH growth, star formation, surface brightness
- Comparison with other works indicates the importance of *exact AGN physics*

Thank you for your attention!