

Modelling Empirically the Ridge-line Between SF and Q Galaxies in the Re~M* Plane

Chenggang Shu

Shanghai Key Lab for Astrophysics Shanghai Normal University

with Rongshi Pan, Zhijian Luo, Zhu Chen (ShNU)

Nov. 9, Dali, China

Outline

- 1. Motivation
- 2、Modelling
- 3. Discussions
- 4、Summary

1. Motivation

Surveys of multi-wavelength : wide + deep + spectroscopic

SDSS, COSMOS, DEEP, CANDELS, +, WISE, HICAT, Herschel, + Chandra, ...

----- large samples of galaxies at a wide range of redshifts

----- unprecedented details results

cosmology, galaxy formation and evolution, local Universe

see review and contribution talks in the conference.

Madau & Dickinson, 14

Renzini & Peng, 15

Thanks to the CANDELS

---- SF and Q galaxies from *UVJ*, sSFR & Av ---- SFMS;

- ----- **R**_{eff} ~ **M**_{*};
- ----- $\Sigma_1 \sim M_*;$
- ----- sSFR (*R*)
- ----- tracks of galaxy evolution
- cf. Faber +, 07; Guo +, 13, 15, 18; Liu +, 16; Fang+,13, 18; Baro +, 17; van del Wel +14; van Dokkum +, 15; Wang +, 17;

Quantity x

Fang + 13

	Ea	Early-type Galaxies			Late-type Galaxies		
z	$\log(A)$	α	$\sigma \log(R_{\rm eff})$	log A	α	$\sigma \log(R_{\rm eff})$	
0.25	0.60 ± 0.02	0.75 ± 0.06	0.10 ± 0.02	0.86 ± 0.02	0.25 ± 0.02	0.16 ± 0.01	
0.75	0.42 ± 0.01	0.71 ± 0.03	0.11 ± 0.01	0.78 ± 0.01	0.22 ± 0.01	0.16 ± 0.01	
1.25	0.22 ± 0.01	0.76 ± 0.04	0.12 ± 0.01	0.70 ± 0.01	0.22 ± 0.01	0.17 ± 0.01	
1.75	0.09 ± 0.01	0.76 ± 0.04	0.14 ± 0.01	0.65 ± 0.01	0.23 ± 0.01	0.18 ± 0.01	
2.25	-0.05 ± 0.02	0.76 ± 0.04	0.14 ± 0.02	0.55 ± 0.01	0.22 ± 0.01	0.19 ± 0.01	
2.75	-0.06 ± 0.03	0.79 ± 0.07	0.14 ± 0.03	0.51 ± 0.01	0.18 ± 0.02	0.19 ± 0.01	

van Dokkum +, 15

cf. Talks by Faber, Chen, Liu

van del Wel +, 14

R_{eff} ~ **M**_{*} relation

Theoretically:

The goal is to investigate the ridge-line in the Re~M* plane empirically by

- (1) taking the observational results as inputs and
- (2) together with simple prescriptions.

2. Modelling

(1) Star forming main sequence (SFMS):

a star forming galaxy is always defined as

SFR > SFR (cf. Kennicutt 83, Brinchmann + 03; Elbaz +, 07; 13)

SFR > 2 SFR starburst SFR < SFR , quiescent, quenched Observationally SFMS adopted as (Speagle +, 2014)

 $\log \psi(M_*, t) = (0.84 \pm 0.02 - 0.026 \pm 0.003 \times t) \log M_* - (6.51 \pm 0.24 - 0.11 \pm 0.03 \times t), \quad (28)$

t is the age of the universe in unit of Gyr

Define:

 $t^* / 2 = M^* / SFR$, (cf. Elbaz +, 11)

the star forming timescale of a star forming galaxy

(2) Estimation of the amount of cold gas in a galaxy

Adopted the star formation prescription of Kennicutt (1998)

$$\Sigma_{\rm SFR} = 2.5 \times 10^{-10} \left(\frac{\Sigma_{\rm gas}}{M_{\odot} \, {\rm pc}^{-2}} \right)^{1.4} \, {\rm M}_{\odot} \, {\rm yr}^{-1} \, {\rm pc}^{-2}$$

Assuming a surface density profile of gas, we get easily get the total amount of cold gas in a galaxy based on its SFR and radius.

For an exponential surface-density profile, the estimated total amount of the cold gas $M_{\rm g}$ (Shu et al ,01)

$$\left(\frac{M_{\rm g}}{10^{11}\,{\rm M}_{\odot}}\right) \approx 0.9 \times 10^{-2} \left(\frac{\dot{M}_{*}}{{\rm M}_{\odot}\,{\rm yr}^{-1}}\right)^{0.71} \left(\frac{R_{\rm eff}}{\rm kpc}\right)^{0.57}$$

 $\dot{M}_* = \mathrm{SFR}$ and R_{eff} its effective radius in UV (SFR) Not sensitive to the profile assumed !

Define the gas consuming timescale of a SF galaxy

$$t_c = M_g / SFR = 0.9 Gyr (\frac{\dot{M}*}{M_{\odot} yr^{-1}})^{-0.29} (\frac{R_{eff}}{kpc})^{0.57}$$

Note : t_c is independent of total baryons in a galaxy halo; relates to V_{cir} and λ implicitly; ONLY valid for SF galaxies, since the timescale is much shorter than the timescale of mass accretion. in the age (t) – M* plane, a galaxy displays as

M*

in the age (t) – M* plane, a galaxy displays as

points of t* ~ tc will give the ridge-line

----- t* at z = 0.5, 1.0 and 2.0, from left to right ----- tc with size of 0.5 kpc, 1 kpc and 5 kpc from bottom

Given size, massive galaxies quenched earlier;

Given stellar mass, more compact galaxies quenched earlier;

Comparing with observations

Comparing with observations (with size of 0.5 kpc, 1 kpc and 5 kpc)

The predicted ridge-lines of SF and Q galaxies in the $R_{eff} \sim M^*$ plane

van del Wel +, 2014

The predicted ridge-lines of SF and Q galaxies in the $R_{eff} \sim M^*$ plane

3. Discussions

(1) Why the model prediction does not work at z~0.5: assuming $R_{eff} \sim R_{e^*}$ in the modelling

not valid for SFMS galaxies with 9.0 <Log M* < 9.5 at z < 0.8

(Wang, Faber + ,17)

The predicted ridge-lines of SF and Q galaxies in the $R_{eff} \sim M^*$ plane

(2) the surface density profile of cold gas
not sensitive to the profile assumed.
for a flat disk with a finite radius

 $t_c = M_g/SFR = 0.95Gyr \left(\frac{\dot{M}*}{M_{\odot}yr^{-1}}\right)^{-0.29} \left(\frac{R_{eff}}{kpc}\right)^{0.57}$ only 0.90 \longrightarrow 0.95, slop will not change !

(3) the power index n (1<n<2): $\Sigma_{SFR} \propto \Sigma_{g}^{n}$ at a give redshift z, SFMS : $Log\dot{M}_{*} = \alpha LogM_{*} + \beta$ the slop "k" of the ridge-line in the $R_{eff} \sim M^{*}$ plane $k = \frac{1}{2} + \frac{1-\alpha}{2(n-1)} \approx 0.82$ $\Delta n = \pm 0.1$, $\Delta \alpha = \pm 0.15 (0.5 < z < 2.5)$ $k_{obs} \approx 0.78$. estimated by eye as paralleled to the $R_{eff} \sim M^{*}$ for QGs

4. Summary

Estimating total cold gas empirically + Taking the SFMS as an input ;

Comparing SF and gas consuming timescales;

Predicted ridge – line in the $R_{\rm eff}$ ~ M^{\ast} plane can match observations well.

Discussions are presented.

LCT (Leighton Chajnantor Telescope)

Moving Caltech Submillimeter Observatory (CSO) to CBI site

as a Shanghai "owned" submm telescope after upgrated

Altitude 5050m, closed to ALMA center

Staffing Plan

• Three main operational stations:

- San Pedro (onsite op)
- Santiago (sci op & data)
- Concepcion (sci op & data)
- Two satellite locations:
 - Shanghai (monitoring/analysis)
 - Pasadena

Steps:

- (1) Disassembly the CSO from Mauna Kea; starting from the end of 2018, 6 months
 (2) Shipping to Antofagasta, then San Pedro 6 months
- (3) Assembly in San Pedro for testing

12 months

(4) Moving to the plateau (higher site) taking the telescope as a whole and further testing

6 months

(5) First light no later than the end of 2021.

Current status:

- (1) MoU signed;
- (2) Team has been established
- (3) Funding

~1/3 of the Chinese funding available from Shanghai; NSF funding applied this year, supported by Caltech; UdeC obtained the supports from CONYCIT etc;

(4) MoU-2 will be signed soon.

Shanghai Normal University since 1954

Thank you!

For a finite exponential disk

The model uncertainty is R ~ 5.5 rd , 5% R~ 4 rd, 10% R ~ 3 rd, 20 %