Dali, Nov. 6, 2018

Size and Structure Evolution of Massive Galaxies Over 0.5<z<2.5

Zhu Chen Shanghai Normal University

Collaborators: Sandra M. Faber, David C. Koo, Jerome Fang, Guillermo Barro, Yicheng Guo, et al.

Re v.s. M_{*}(CANDELS Sample)

Van der Wel et al. 2014

Progenitor bias

Newly quenched galaxies as the cause for the apparent evolution in average size of the population

$$\Gamma_{r_{1/2}} = \frac{\Phi_{r_{1/2}}(0.2 < z < 0.4)}{\Phi_{r_{1/2}}(0.8 < z < 1)}$$

Larger size quenched galaxies add to the quenched population at lower redshift

Carollo et al. 2013

Abundance matching

Leja, van Dokkum & Franx, 2013

Σ_1 v.s. M_*

$\sum_{1 \text{kpc}}$: Stellar mass density inside 1kpc

Low z

Age of Univ.

High z

- → The $\sum_{1 \text{kpc}}$ vs. Mass has tight correlation, the scatter of the correlation shows no evolution
- > The slope of the $\sum_{1 \text{kpc}}$ vs. Mass relation is almost constant with cosmic time
- $\succ \sum_{1 \text{kpc}}$ represent the central properties of galaxies, less fluctuate by the mass accretion activities at outer part. More stable and therefore closer to a clock to track galaxies in transit from the star-forming to the quiescent phase

$\sum_{1 \text{kpc}}$ Cumulative Function

Size v.s. Mass

The size increase is about 0.4 dex with cosmic time, while the mass increase is about 0.15 dex

Sersic vs. Redshift

The selected galaxies are on average spheroidal like

The Sersic index is increase with cosmic time.

Conclusions

- * We use the constant number density of $\sum_{1 \text{kpc}}$ technique to link massive galaxies to their progenitor to study the morphological evolution of the sample
- ♦ The size of massive quiescent galaxies at high redshift are about 2-3 times larger than low redshift quiescent galaxies, while the mass growth is 0.15 dex over from z=2.5 to 0.5.
- The evolution of size and mass of the selected sample indicates minor merger is the main mechanism for size growth of the massive quiescent galaxies.
- ♦ The Serisic index of the selected sample is increase with cosmic time.
- The evolution of size and mass of the selected sample confirmed the size growth of the quiescent population is partly due to progenitor bias.